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1. Introduction

LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave

propagation and noise suppression in a rectangular channel with a continuous liner at

the top wall. This new implementation is designed to streamline the usage of the several

codes making up LINER, resulting in a useful design tool. Major input parameters are

placed in two main data files, input.inc and num.prm. Output data appear in the form

of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the

physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed

account of program usage, including input formats and graphical options. A sample run

is also provided. Finally, Section 5 briefly describes the individual program files.

2. Physical Model

The physical model is based on the 2D compressible, inviscid fluid flow in a rectan-

gular channel, as depicted in Fig. 1. We employ Cartesian coordinates (x, y), where x

is the streamwise direction and y the normal dkection. The governing equations are the

2D Euler equations,

Continuity : 0p + v. (pv) = 0
Ot

Copyright 1999 by R. S. Reichert and S. Biringen, Report and Associated Software



0V

Momentum : p--_ + pV • VV = -Vp

OE

Energy : 0-'T + V- EV = -V. (pV)

where V = (u, v) T is the velocity, p is density, p is the pressure, and E is the total energy.

These are numerically inte_ated, along with the equation of state,

E - P + lpV2
"_-1 z

where 7 is the ratio of specific heats, which we shall take as 7 = 1.4. Nonreflective inflow

and outflow boundary conditions are imposed. Boundary conditions at the normal walls

(y = 4-y,_) are rigid slip, allowing nonzero tangential velocity while maintaining zero

normal velocity. The initial conditions consist of a quiescent field, with an optional

y-directed bias flow superimposed. Although this model is inviscid, a small artificial

viscosity is used to stabilize the difference scheme.

The liner is incorporated as a source term in the momentum equations, rather than

through boundary conditions. This is done semi-empirically, with impedance parameters

chosen to match experimental data on the liner materials. As shown in Fig. 2, a steady

bias flow through the liner is also modelled. See Ref. 1-2 for a detailed description

of liner characteristics. Physically, the liner is composed of a face sheet and septum,

sandwiching a honeycomb core. A constant bias velocity may be directed through the

liner, if desired.

3. Numerical Method

The Euler equations are solved in space and time using the explicit (2,4) scheme of

Gottlieb & Turkel [3], with artificial viscosity incorporated as a sixth-order source term.

Spatial boundary conditions are implemented using the method of Thompson [4].



4. Computer Programs

4.1 General Description

LINER consists of a suite of F77 codes, which may be classified functionally as data

input (relatively permanent or relatively ephemeral), computational, and data output

(numerical or graphical). An entire program execution is supervised by a single Unix

script, called RUN.

4.2 Input

Input parameters are found in input.inc and hum.prin. The liner geometry is ge_l.-

erated in lnrgeom.f, but the user need not edit this file. See section 4.5 (Sample Run)

for the specific contents of the two input files.

4.3 Output

Sound pressure level is written to ASCII file sound.idl, while power per span is

written to file powspan.

4.4 Graphical Options

All plotting is carried out in the GNUPLOT system, with a single Gnuplot macro

processing a number of ASCII datafiles. Plots are automatically made (using GHOSTVIEW)_

of Transmitted Power per Span and Sound Pressure Level (SPL) y-profiles at three se-

lected x-values. To page through plots, type in "q" after each plot. The four plots are

written to files pl.ps, p2.ps, p3.ps, and p4.ps. The user may produce additional SPL

profiles by running program splx.fwith xl, x2, and x3 set as desired in input.inc.

3



4.5 Sample Run

As a specific case, let us consider a 61 cmx 19.25 cm domain, discretized by a

489 x 155 grid inxandy, i.e. nx= 487, ny= 153. With these choices, dx= dy=

0.125 crn. The lower liner sheet is located at y index il = 122, with upper sheet (septum)

at iu = 142, corresponding to a total liner depth of 4 cm. The bias velocity, scaled by

the sound speed, is negative blowing out of the liner. Here we take vbi_s = -0.01. The

equations are advanced a total of nrnx = 6000 steps with timestep dt = 0.02. The input

disturbance is a plane wave of nondimensional frequency w = 0.23099946 (f = 1250 Hz)

and normalized amplitude A = 0.002 (140dB). Specifically, f is scaled by u_/Ir, where

ur is sea level sound speed and I, = 1 cm; A is scaled by p_u 2, where p_ is sea level

density. Parameters nmx, dx, and dt are to be specified by the user in file hum.prin.

The liner impedance parameters (defined in Ref. 1) are specified by the user in

file input.inc. This file also includes parameters dy, nx, ny, il, iu and Vbias. For

this example, the liner impedance parameters were chosen to be al = 0.0283, au =

0.0905, bl = 21.8, bu = 233.0, xclsp = -1.14, and xcusp = -1.11338.

The Sound Pressure Level is to be plotted vs y at xl = 8.5 crn, x2 = 17.0 crn,

and x3 = 52.5 crn, as set in input.inc. SPL profiles may easily be generated for any

other desired values of x without rerunning the whole code, by resetting xl,x2, and x3

in input.inc, then recompiling and executing splx.f. Figure 3 shows the resulting plot of

Power Drop, while Fig. 4 presents the three SPL plots.

5. Glossary of Computer Programs

if.f: Creates forcing function field to prevent the mean bias field from evolving in time.

Writes file if.in.

goplot: GNUPLOT macro to make plots of power drop and SPL.

4



input.lnc: This is the basic input file, to be edited by the user. It is included in a.ll

FORTRAN codes.

linchn_orig.f: This is the workhorseof the system,which numerically solvesthe differ-

enceequations representingthe flow.

linchn_ppav.f: Sameas linchn_orig.f, except that time-averaging is applied to the fluc-

tuating (acoustic) field. Writes final output files.

lnrgeom.f: Constructs liner forcing function distribution throughout domain.

mnbias.f: Creates solution field for any desired mean flow, such as a bias flow. Writes

file rstrt.in.

num.prm: Contains basic run parameters, to be edited by the user. Warning: do not

add any additional lines of comments to this file.

run: Unix script which supervises an entire run.

spl.f: Postprocessor to generate plot files for goplot

References
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scrip% to run LINER system

Generate y-grid

install test for files

m newstrt.bin

m grid.out

77 -u grid.f -o gg

77 mnbias.f -o gmn
_cho ,finished compiling grid.f and mnbias.f'

[mn

:p rstrt.0 rstrt.in

[77 inrgeom.f -o gln

_ln
[77 ff.f -o gff

_ff
_cho ,finished running inrgeom.f and ff.f

_77 linchn orig.f -02 -o gln

#f77 line.f -o gln

_!n
_cho 'finished running linchn_orig.f'

nv newstrt.bin rstrt.in

rm pp.av jetdat.bin jetgrd.bin

cp num.prm numsave.prm

echo 'starting addn'

f77 addn.f -o ga

ga
echo 'finished running addn'

mv nums.prm num.prm

gln
_echo ,finished gln'

_rm newstrt.bin jetdat.bin jetgrd.bin

f77 linchn_ppav.f -o gay

gay
_echo 'finished running linchn_ppav.f'

Lcp num.prm numxx.prm
my numsave.prm num.prm

Lf77 splx.f -o gg

_gg
echo 'finished splx'

_gnuplot goplot



input.inc
Main input file, to be edited by the user.

grid constants (to be changed by user)

nx = number of interior x gridlines (nx+2 total, including bouD_<i_

ny = number of interior y gridlines (ny+2 total, including boundaries)

il = y index of lower porous sheet (face sheet)

iu = y index of upper porous sheet (septum)

dely = dx = dy = mesh spacing

integer nx,ny, il,iu

real defy

parameter(nx=487,ny=153,dely = .125,i1=122,iu=142)

physical constants (not to be changed)

real gam,gaml

parameter(gam=l.4, gaml = 0.4)

rba and pba are quiescent medium nondim density and pressure

real rba,pba

parameter(rba=l.O,pba=0.714285714286)

Print interval

integer npr

parameter(npr = I00)

x-values for SPL plot (in cm)

real xlspl,x2spl,x3spl

parameter(xlspl = 8.5,x2spl = 17, x3spl = 52.5)

bias velocity

real vbias

parameter(vbias = -.01)

Liner Impedance Parameters

chc = honeycomb x resistive term

al = linear resistance term, lower porous sheet

bl = nonlinear resistance term, lower porous sheet

sg = sigma for resistance distribution

sgx! = sigma x lower, lower sheet sigma for reactance distribution

sgxu = sigma_x upper, upper sheet sigma for reactance distribution

au = linear resistance term, upper porous sheet

bu = nonlinear resistance term, upper porous sheet

xclsp = lower sheet linearized reactance term

xcusp = upper sheet linearized reactance term

real chc

parameter(chc_0.8)

real al,bl

parameter(al=O.O283,bl=21.8)

real sg,sgx!,sgxu

parameter(sg = 2.0,dely,sgxl=2.*sg,sgxu=4.4*sg)

real au,bu

parameter(au=O.O905,bu=233.0)

real xclsp

parameter(xc!sp=-l.14)

real xcusp

parameter(xcusp=-l.1338)



variable rs is .true. if this is a restart and .false. if not
T

variable nmx is the time step number to which to march
6000

, variable ck is number of time steps between calls to chkval()
100

* mean ic: =0 -> top-hat inflow (Not used in LINER)
2

, variables dx (= dely = dy) ,dt

0.1250000 2.0000000E-02

* level of sixth-order artificial dissipation vk
2.0000000E-02

, constant in reflective outflow condition of poinsot and Lele (subsonic only)
0.0000000E+00

, nondimensional reference pressure for SPL calculation
1.4100000E-10

• harmonic u disturbance amplitude and frequency
2.0000001E-03 0.23099946



program splx.f

generate SPL for gnuplot macro 'goplot'

include ' input, inc'

real xx(-l:nx+2),yy(-l:ny+l)

real spl(O:nx+l,O:ny+l), Y

integer i,j,il,i2,i3,nl,n2

open (unit=35, file=' sound' , status=' unknown' )
open (unit=351, file=' splplot' , status=' unknown' )

read(35,*) nl,n2
write(6,*) nl,n2

!00

_98

)

)
99
200

It

m

m

a
ill

4

do i00 j = O,n2-1
read(35,*) (spl(i,j),i=O,nl-l)

continue

il = xlspl/dely + .0000001

i2 = x2spl/dely + .0000001

i3 = x3spl/dely + .0000001

write (351,98) xlspl,x2spl,x3spl

format('# xl =,,f8.5, ' x2 =',f8.5,'
x3 =' f8 5/)l "

do 200 j = O,n2-1

y = j*dely
write (351,99) y, spl (il, j) ,spl (i2, j) ,spl (i3, J)

format (4e13.5)

continue

close (35)

close (351)

end



_# goplot (gnuplot macro)
_set term postscript portrait

set samples 35000
_set size .75, I.
kset autoscale

set nokey
b#
Iset title 'Transmitted Power per Span'

set xlabel 'x'

_set ylabel 'Power / Span '

_set output 'pl.ps'

'powspan' w 1_P
,#
_set title 'SPL'

_set xlabel 'y at xl'
set ylabel 'SPL (dB)'

_set output 'p2.ps'

'splplot' using 1:2 w 1_P
#

_set title 'SPL'

_set xlabel 'y at x2'

set ylabel 'SPL (dB)'
set output 'p3.ps'

'splplot' using 1:3 w 1_P
_#
_set title 'SPL'

_set xlabel 'y at x3'

set ylabel 'SPL (dB)'

_set output 'p4.ps'

_p 'splplot' using 1:4 w 1

#
!ghostview pl.ps _

!ghostview p2.ps _

_ !ghostview p3.ps
!ghostview p4.ps

_q

h





TIME-DOMAIN SIMULATION OF

ACOUSTIC PROPAGATION IN A LINED DUCT

R.S. Reichert and S. Biringen Department of Aerospace Engineering Sciences

Universityof Colorado

Boulder, Colorado 80309-0429

Abstract

An inviscid, spatial time-domain numerical simulation is employed to compute acoustic wave

propagation in a duct treated with an acoustic liner. The motivation is to assess the effects on

sound attenuation of bias flow passed through the liner for application to noise suppression in jet

engine nacelles. Physically, the liner is composed of porous sheets with backing air cavities. The

mathematical model lumps the sheets' presence into a continuous empirical source term which

modifies the right-hand side of the momentum equations. This source term specifies the time-

domain characteristics of the frequency-domain resistance and reactance of the liner's component

sheets. Nonlinear behavior of the liner sheets at high sound pressure levels is included in the

form of the source term. The source term constants are empirically matched to frequency-domain

impedance data via a one-dimensional numerical impedance tube simulation. The resulting liner

model is then incorporated into a two-dimensional Euler solver and used for simulations of a realistic

duct configuration. Sound pressure levels and axially transmitted power are computed to assess the

attenuation effects of various magnitudes of bias flow. Simulation results are compared to available

experimental data from a geometrically similar lined duct.

Problem Introduction and Description

A

m

A

Reduction of noise emitted from jet engines continues to be a key component of aircraft design.

One major facet is inlet noise. Mechanical and hydrodynamic noise from the engine components

propagates upstream and out of the inlet. Current generation jet engine designs treat nacelle inlets

with acoustic liners composed of porous sheets with backing air cavities for acoustic attenuation. It



is web known that the impedance of porous sheets varies at high sound pressure levels. Observations

show that incident sound pressure amplitude relates nonlinearly to particle velocity both for a single

orifice (Ingard & Ising I) and porous sheets (Mellinga). One concept for varying the impedance

properties of liners is to explo'_ this nonlinear behavior by blowing a low level, steady bias flow

through them. In this concept, the bias flow, which might be generated naturally by redirecting

the oncoming air stream through the nacelle skin, can be adjusted to tune the liner impedance for

optimal attenuation over a range of off-design flight conditions. The simulations presented in this

work consider high amplitude acoustic propagation within a simple duct geometry in an effort to

model the physics and eventualiy validate this idea.

We implement the liner model into the governing (Euler) equations through a source term in

the interior of the computational domain. This approach enables the representation of complex

composite liner structures in terms of one set of empirical, adjustable constants. An alternative

way of representing the liner is advanced by Tam & Auriault, 3 where finite impedance boundary

conditions are imposed at the liner surface. However, because tiffs model requires composite li3-Jer

impedance information at the boundary, it can be difficult to model complex liners. In the present

liner model, we lump the physical and geometric attributes of the liner into a source term in t.be

momentum equations. This source term is frequency-independent and contains several empirical

constants which are matched to impedance data (obtained in the frequency-domain), for a given

liner component. Consequently, the time-domain model so obtained produces the same impedance

behavior as the actual material In this way, complex lining geometries, composed of multiple sheets

with various impedances, can be built up with ease, in contrast to boundary condition methods

which must know the liner's composite impedance presented to the duct at the face sheet. The

governing equations are integrated forward in time to capture the evolution of the acoustic field in

the presence of the liner structure. The primary motivation is to assess and optimize the effect of

natural bias flow through the liner.

The geometry considered here approximates that of a lined duct test section constructed at

Rohr, Inc., as detailed by Yu, Kwan_ & Stockham. 4 Depicted in Fig. I, the section is 19.25 crn



in height and 61 cm in length. The numerical simulation considers a two-dimensional planar cut

bounded by solid rigid wails at top and bottom and by open boundaries, indicated by dotted lines

in the figure, at left and right. The experiment also possessed upstream and downstream hard

walled duct extensions with reverberation chamber terminations; the present simulations include

only the test section. The top surface of the duct is acoustically treated with a liner composed of a

porous face sheet (18% open area) and backing septum (6% open area) sandwiching a honeycomb

core. Plane waves (i.e., lowest duct mode) are forced at the left boundary and allowed to propagate

along the duct to the right through a quiescent air medium. Although only plane wave cases are

reported here, the method allows examination of higher duct modes simply by changing the form

of the time-dependent forcing apphed at the left boundary.

As implemented in the present study, time-domain modeling of acoustic lining materials has

several advantages over frequency-domain analysis. First, it provides a convenient means of imple-

menting complex liner structure. Composite liners of amy number of sheets and backing cavities

may be built up. As mentioned above, only the component impedance of the sheets, rather than

the composite impedance at the face sheet, need be known. It is also simple to construct liners in

which impedance varies spatially, which is useful since segmented treatment allows attenuation of

widely disparate frequencies (Motsinger _ Kra-Cts). Another strength of the current model is that

it accommodates both linear and nonlinear noise amplitudes and incorporates nonlinear impedance

of the porous sheets. Finally, time-domain analysis may treat multiple frequencies and acoustic

modes simultaneously. These many desirable qualities make time-domain analysis attractive for

computational aeroacoustic problems.

Development of Time-Domain Model Form

Our goal is to develop governing equations for a continuum which contains porous material.

While no universal form exists for the equations governing flow through porous media (Nayfeh,

Kaiser, & TehonisS), Morse & Ingard T provide a widely accepted form. The discussion below

justifies, to some de_ee, the form of their momentum conservation equations. Mass and ene3"gy

conservation equations could have analogous modifications. However, numerical impedance tube



experiments,similar to thosediscussedbelow,reveal that the appropriate mass conservation modi-

fication produces only infinitesimal differences in results. Energy conservation plays only a passive

role in acoustics, so its modifications are neglected here as well. Consequently, we treat only

b

t

t

t

Ib

momentum conservation. ,_

We consider the equatio_ for conservation of momentum, which apply for a compressible,

viscous flow:

0 0 0r_j (i)

for i = 1, 2, 3. Here, "rij is the stress tensor which includes stress due to pressure. Suppose that

porous acoustic lining material is distributed uniformly in some region of the flow field. The

material's presence will cause flow resistance which can be modeled as as normal stress term across

an infimtesimal fluid volume in each coordinate direction. This term augments the pressure gradient

as shown in Fig. 2. Consequently, denoting acoustic material resistance as N, we modify the stress

term to read

vii : --(P + N)6ij. (2)

Here, we have assumed that the porous material imparts no net shear to the fluid. Following

Zorumski & Parrott, 8'9 we write the gradient of N as a time-domain damping term Rtd multipfied

by the local velocity ui, so that

0p (3)
Ozj Ozi

Additionally, the effective fluid density within the volume is increased by a constant time-domain

factor Xtd (typically between 1.5 and 5.0 for acoustic materials T) due to the material's presence:

p ----+ XtdP Xtd > 1. (4)

The density factor accounts for an increase in effective mass as the fluid moves through constrictions,

as suggested by Morse & I-ngard. r Substituting Eq. (3) into Eq. (1) and making the replacement

(4) yields a modified differential momentum equation: 7

O (pu,)+ O 1 (_gp ) (5)= + .

I



We must now substitute model relations for R_d and Xtd which properly represent the time-domain

behavior of acoustic lining materials. This is accomplished by using forms which reproduce the

porous material behavior in the proximity of each component porous sheet, as elaborated in the

following section.

Mathematical Model

The full governing equations are the two-dimensional Euler equations, which express conserva-

tion of mass, momentum, and energy for the inviscid motion of compressible fluids. They are here

written for a cartesian domain:

where

-_--+ _+ _
(6)

$=(p _ _ E)T, (7)

and

pu

pvu

IS+ p]_

The state equation closes the system:

pv

puv

pv 2

[E+ ply,

is)

E - _ + lp(u2 + v2) • (9)
"y-1 2

The above set has, as the dependent variables, the conserved quantities of mass p, x-directed

momentum pu, y-directed momentum pv, and total energy E, each expressed on a per volume basis.

The primitive variables are density p, x-directed velocity u, y-directed velocity v, and pressure p.

Note that S is the right-hand side term of Eq. (5). Specification of the open sides as non, effective

and the solid wails as rigid slip boundaries in Fig. 1 completes the definition of the mathematical

problem.



We havenondimensionalized the equation system using the following reference scales:

Ir= 0.01m

[Jr = 340.25 m/s

lr/Ur = 2.939 x 10-5 s

0r = 1.225 kg/m 3

PrUr 2' 1.418 x 105 Pa

----+ length scale,

---+ velocity scale,

---+ time scale,

density scale,

---+ pressure, energy
scale.

Note that the density and velocity reference values correspond to standard atmosphere density and

sound speed. It is also worth noting that the equations will capture both linear and nonlinear

phenomena, which is important for high amplitude wave dynamics.

The presence of the discrete porous sheets is felt via the source term S which comes from the

right hand side of Eq. (5). We form Rtd and Xtd to capture the general experimental freq_._ ;;-

domain behavior observed by Ingard & Ising, t Melling, 2 and Zorumski & Parrottfl Speciiic_liy,

Rohr, Inc. provided impedance data in the form:

z = (no+ sv)+ ix, (10)

where V is the root-mean-square particle velocity at the sheet surface. The real part is the velocity

dependent resistance, and the imaginary part is the reactance. Reactance is frequency dependent

and was provided as

X = ink,

where k is the incident wavenumber and m is a given constant for each porous sheet type. The

term 57 (the right-hand side of Eq. (5)) allows for simple nonlinear behavior in the resistance. For

R_d, we use

Rta = fR(x,y)(A + Blud),

where ui = u, v for the z and y momentum equations, respectively. The function fa(x, y) is a

smearing function meant to distribute the discrete effect of a porous sheet. It is introduced purely

for numerical convenience and is detailed below. Similarly, we substitute a model for Xtd in S:

Xtd = 1 -- X(fx(x, y)/[fx(x, _/)]ma.x).



Here again, we have introduced a convenient smearing function, this time fx(X, y). Once Rtd and

Xtd are specified, we can detail the entire right-hand side source term S:

1- x(fx( ,

o
[OplO:r + ufR(:r,y)(A + Sl_l)]

[OplOy + vfR(:r., y)(A + Blvl)]

0

f
0

u cCx,y)

0

0

(11)

The velocities u and v are the same particle velocities present in the terms W, F, and G defined by

Eqs. (7) and (8) and contain the bias flow velocity. In effect, the empirical parameters A, B, and

X, respectively, specify the levels of linear resistance, nonlinear resistance, and linear reactance of

each sheet, but in the time-domain. The distribution C(x,y) is set to a constant value (C = 0.8)

between the face sheet and parallel backing septum to account for the presence of the honeycomb

core. Since this additional resistance-like term only appears in the x-momentum equation, it acts to

suppress u within the core and thus helps the face sheet/septum combination approximate a locally

reacting liner element. Note that A = B = C = X = 0 gives back the original Euler equations, so

these correspond to open air.

As discussed above, the functions fR(z, y) and fx(z, y) control the spatial distribution of the

liner's effect for the resistance and reactance, respectively. They are specified as Gaussian distri-

butions in a coordinate s normal to the sheet surfaces:

1flj__ (12)
f(s)=

Within these functions, _ determines the distribution thickness, so we have aa and ax, respectively,

for .fR(x, y) and fx (x, y). The constant aR is fixed as 2Ax simply to distribute the discrete effect of

sheet resistance for numerical purposes. The constants A, B, X, and ax are matched to complex

impedance data via a numerical impedance tube simulation, as described below. The authors

conducting the duct experiment 4 provided the impedance data. The above model has a simple

nonlinear behavior in analogy to Eq. (10), but there is no inherent Limitation to the complexity

that could be mimicked with the time-domain model.



Nonlinearbehaviorin reactance is not explicitly modeled in Eq. (11), though it is physically

present. The model consequently linearizes the reactance about each particular bias flow level.

Nonlinearity tends to reduce the sheet reactance, but the effect is not indefinite as acoustic am-

pUtude increases. When the root-mean-square normal velocity at the sheet surface attains a high

level, the reactance assumes a constant value. The velocity at which this saturation occurs depends

on the particular sheet porosity, but is at most V = 0.0095 for the component sheets considered

here. A cons_an_ reactance must consequently be used for all sheets when Ivbia_l >_ 0.0095. Below

this level, each sheet is considered separately as to whether its reactance behaves nonlinearly or

is saturated. This means that X in Eq. (10) is a somewhat complicated function of V. To ap-

proximate the variable reactance, X is consequently computed to be a fixed number between the

linear Xmax and the saturated Xmin, sized according to the expected normal velocity at each sheet

surface.

Numerical Solution Method

We discretize and numerically integrate the partial differential equation system Eq. (6), coupled

with the spatial boundary conditions, in a rectangular domain, with a uniform mesh in both the

z- and y-directions. The time-advancement scheme is Gottheb & Turkel's 1° explicit (2,4) scheme,

which is second-order accurate in time and fourth-order in space. The variant of the method used

here is a MacCormack-like explicit predictor/corrector. For grids that are uniform in x and y, the

method may be written as:

- (Gij+2 G_,j+I)]

+ t(5?j) + at( j), (13)

8



-. _. }+At(Did) + At(Si_) • (14)

Here,

At At

The spatial derivatives o£ pressure in S are computed using second-order central finite differences.

The above steps employ forward differencing in the predictor step and backward differencing in the

corrector step. This is switched on alternating time steps to a predictor with backward differencing

and corrector with forward differencing to obtain the full (2,4) accuracy. For stability, the Courant-

Friedrichs-Lewy (CFL) number is made to satisfy:

(u + a)=a_At 2
CFL= = Az < 3'

and

(v + a)m=At 2

CFLy = At/ < 3'

where a is the local sound speed, a = _.

The (2,4) stencil has five points in both z- and y-directions, so it extends over the domain

edges at a boundary and first interior point. The method uses the unmodified (2,4) scheme at the

first interior point. To account for the point beyond the edge, fluxes are extrapolated (third-order)

to a ghost point one increment outside the domain. Boundary points, including both rigid top

and bottom walls and the noureflective boundaries at the "inflow" and "outflow", are treated with

the method of Thompson. n'12 This boundary treatment uses a characteristic decomposition of the

ELder equations to give an estimate of the flux derivative normal to the boundary at the boundary.

The method works well with the plane wave modes considered in the present problem, as elaborated

in the code validation presented below.

Artificial viscosity terms are added to the numerical scheme to enhance stability, as indicated

by the/5 terms. Sixth-order dissipation is added as a source term to the right-hand side of the

ELder equations:

/5 _a((Az) 8asffr 'A '6Osffz_
= \ (15)



The magnitudes of the artificial viscosit 7 terms are O[(Ax) 6] and O[(z&y)8], so the foul"th-onler

spatial accuracy of the method is unaffected. The parameter ed is empirically defined and did not

exceed ed = 0.04. The central difference coefficients used for the sixth-derivatives are computed

using Lagrange polynomials. _v'e found some explicit dissipation necessary to suppress spurious

oscillations developing around the porous sheets.

The mean bias flow is specified as a '_ozen" field upon which the acoustic perturbations are

allowed to evolve. In this way, the mean field need not be computed; nor does it evolve. The

addition of a forcing term _"to Eq. (6) accomplishes this:

a_ a_ ad
-_- + b-; + N- #+e= o, (J_)

where

OF #G -:

_= - a-_- a-#+ s. (_7)

The overbar here denotes the base field, which consists of the bias flow and grazing flow (if present)

but not the acoustic perturbations. A uniform vertical velocity Vbias is used throughout the do_;)b_

for the base field. Thus, the bias is directed normal to the liner, and there is no grazing flow. For

the relatively low bias flow levels of the present study, there is physically no significant coup]b)g

between acoustic and mean flow fields, so this frozen flow technique is expected to be valid. It

should also be noted that a bulk grazing flow in the duct could be implemented using such a

frozen flow formulation. The technique has the limitation that the mean flow field does not feel the

presence of the liner structure, but it is a quick way to obtain a converged bias flow.

Numerical Impedance Tube Simulation

As mentioned above, the liner model's parameters must be matched to the a prioriknown

impedance data for the component porous sheets under consideration. To this end, a numerical

model for an impedance tube is developed. In this model, one-dimeusional Euler equations are

integrated on a domain with a rigid termination at the right end, and the left boundary is forced

with acoustic waves. A numerical porous sheet "sample" is placed some distance to the left of

the rigid termination by centering the Gaussian distributions Eq. (12) at that point. The effective

10
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impedance of the sample is deduced from the standing wave pattern set up by the incidence ;_i

reflected waves.

The impedance tube computations employ parameters similar to those used in the full two-

dimensional simulations. For i_tance, Ax = 0.125 and At = 0.025. The acoustic forcing at the

left boundary of the form:

/_(t)=Pcos(wt+lr/2) 5=/) 8=0 /_=16, (18)

gives purely plane waves with nondimensional wavelength 25, which is also the temporal period.

This corresponds to 1361 Hz, a value within the frequency range of interest for the two-dimensional

duct. The domain has 601 points so that the tube length is 75. The simulations are run 5500At,

or to nondimensional time 137.5. This allows waves propagating at unity sound speed to set up

several wavelengths of a standing wave without the reflected wave impacting the left boundary.

We follow the method of Kinsler, Frey, Coppeus, & Sanders 13 to extract the impedance from

the standing wave pattern. Accordingly, the impedance z is computed as

1 + Ke ie
z= (19)

1 - Ke is"

The constant K is given in terms of the standing wave ratio SWR, the ratio of maximum to

g

SWl_- 1 Pmax
where SWR =- (20)

SWR + 1' Pmi,"

minimum pressure amplitude:

The phase of the standing waves relative to the sample surface determines 8:

(21)8 = 2k(Xsample- =node)--It,

where k is the wavenumber of the incident waves. (Refer to Fig. 3 for an example of these quantities

as measured from a standing wave pattern.) The impedance value thus measured equals that of

the sample plus the impedance of the closed tube behind the sample. Kinsler et al.la show that

this backing tube impedance is -cot(kd), where d is the depth of the cavity from the sample to

the rigid termination. Consequently, we fix the depth at one-quarter incident wavelength such that

- cot(kd) = 0, and the measured impedance is simply that of the sample.

11
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Porosity A B Xrna.x Xmin ax

18% 0.0283 21.8 -0.738 -0.570 4.0 z_r

6% 0.0905 233 -0.908 -0.669 8.8 A_.

Table 1: Time-Domain Model Parameters for Liner's Component Porous Sheets

Equation (10) represents the frequency-domain impedance, and components 7_o, S, and 9:' are

experimentally determined for a given liner material such that they are known input for matching

to our time-domain model. The time-domain constants A, B, X, and ax are adjusted until the

computed impedance matches that of the porous sheet, given in the form of Eq. (10). In matching,

there exists a one-to-one correspondence between A and T_, B and 5, and X and m = A'/k.

The parameter ax may also be adjusted to effect gross changes in rn = X/k. It should be noted

that X and _x, since they match to m for any wavenumber k, are usable time-domain conntz_)I._

regardless of the incident frequency. When computing total (linear plus nonlinear) resistance, V is

computed in the simulation as the root-mean-square velocity over one wave period at the center

of the sheet distribution. Figure 3 shows a representative standing wave solution for the 6% open

sheet, with the center of the sheet indicated by the vertical line. Table 1 displays the constants

obtained through application of this method to the three sheet types. This method is general in

the sense that complex impedance data for any sample, porous sheet or other, can be matched to

the empirical constants of the model.

By matching the frequency-domain data to time-domain parameters, we have ensured that the

numerical "sample" possesses the correct time-domain behavior. Figure 4 provides an additional

qualitative validation. The plot shows the Fourier transform of a pressure time series recorded at a

point midway between the sample and the rigid termination in the impedance tube. This particular

case employs parameters for a 6% porous sample. It is apparent that the sound pressure transmitted

through the sample contains overtones of the fundamental almost entirely of odd order. This effect

is characteristic of material with nonlinear impedance and has been observed experimentally by

Ingard & Ising 1 for nonlinear transmission through a single orifice. The numerical liner terms are

scattering acoustic energy to odd harmonics and are thus mimicking the correct physical behavior.

12



Duct Code Validation

The results of two trial simulations provide important checks of the duct code solution method

and boundary conditions. The solution code has also been extensively tested for Kelvin-Helmholtz
I

linear instabilities down to marginal resolutions, as discussed by Reichert 3. Those simulations

showed only slight phase and amplitude errors at resolutions of 12 to 15 points per wavelength.

The present cases extend the validation to the case of well-resolved (over one hundred points per

wavelength) acoustic waves. In the first case, a hard wall boundary is placed at the position of the

face sheet, and the lowest duct mode (i.e., plane wave) is forced with nondimensional amplitude

0.002 (140 dB) and frequency 27r/17 (2000 Hz) at the left boundary. The numerical parameters are

the same as those used for the production duct simulations and are given in the following section.

In this inviscid simulation, the waves should propagate along the duct with no attenuation, so

sound pressure level (SPL), computed from the simulation data as

SPL = 10 log _ dt /Pr,f ,

should remain a constant 140 dB. Here, T is a period of the wave and Pref is the nondimensional

equivalent of 2 × 10 -5 Pa. Further, the x-directed intensity Iz, defined by

Ix = _ tiff dr, (23)

should be a nondimensional constant 2 × 10-s at all points within the domain. Finally, the power

transmitted along the duct per span, computed as

_0 _rau
P/span = Ix dy, (24)

should remain constant at 3.05 x 10 -5 nondimensionally, since ymax = 15.25. It should be noted

that, for the calculations of the next section, a dB drop across the duct length is also computed.

For plane waves (which all later results nearly approximate), it can be shown that the dB drop

between two x-stations is:

SPL2 - SPL1 = 10 log fp, (25)
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where fp is the fraction of station 1 power retained at station 2. Plots of the above quantities

computed from the simulation are not displayed since their profiles are flat. Examination of the

numerical results, however, shows that the time-domain simulation yields the above quantities to

at least four significant figures_after reaching a harmonic state. This suggests that the solution

method and boundary conditions are working properly for this simplified problem.

The second trial case tests the method's ability to allow waves to exit the open right boundary

with minimal reflection. In this case, all significant features of the production simulations are

considered, including the full duct with a liner composed of a face sheet, septum, and honeycomb.

Also, a bias flow Vbias = --0.01 is applied (negative implies blowing out of the liner into the main

duct). The duct is forced at the left boundary with 1250 Hz waves of 140 dB. In the first run, the

domain length is 61, and in the second run, the domain length is doubled. The simulation time

allows the waves to establish a harmonic state for x _ 61 but does not permit them to reach the

right boundary of the longer domain. This time is also long enough for reflections from the right

boundary to progress back into the shorter domain. Figure 5 plots transmitted power drop per

span (from the left side of the domain to the particular =-station of interest) and demonstrates

that the reflections are negligible and do not degrade the solution in the interior. It is apparent

that some difference between the curves exists near the outflow, though this difference is less than

3%. In this study, we use the slope of these curves in their linear region (measured arbitrarily as

the slope drawn between points at x = 18 and x = 36) as one measure of duct attenuation. The

two slopes are -2.295 x 10 -r and -2.297 x 10 -_, which differ by much less than 1%. It can be

concluded that, for the purposes of these simulations, the artificial open boundary conditions are

performing adequately.

Duct Simulation Results_

The effect of varying levels of bias flow is examined for the propagation of the lowest duct

mode, Eq. (18), within the lined duct of Fig. 1. The domain is discretized using a 489 × 155

uniform mesh (Ax = Ay = 0.125), and CFL numbers are approximately 0.16 (At = 0.02), which

is about one-fourth of the numerical method's linear stability limit. The time-domain solution

14



fieldsare marched 6000/Xt (about two duct lengthacousticpropagationtimes),at which time SPL

and Ix are computed over one harmonic period.The nondimensional amplitude of the waves is

set to 0.002,which corresponds to 140 dB. The frequencyof the waves isw = 2z-/27.2,which

dimensionallyis1250 Ilz,whil_ biasflowisvaried.Nondimensionai biasflowvelocitiesare inthe

range lVbiasl < 0.03) which dimensionally gives ]z_iasl _< 10 rn/s. Note that this velocity is blown

out of the liner into the main duct, so it is actually negative in value in the simulation. Other cases

examine attenuation as acoustic frequency varies over a range from 630/-/z to 4000 Hz at a single

bias flow level (l%iasl = 0.005).

Figure 6 is a comparison of sound pressure levels for varying magnitudes of bias flow. The

plots show SPL versus _/ at two z-stations. The dotted vertical lines indicate the _locations of

the two horizontal porous sheets. As expected, the SPL drops dramatically within the liner as

Iz_iasl increases, especially behind the 6% septum. It is apparent that as the bias flow increases, the

SPL drops most dramatically at the surface of the 6% septum sheet. This is not surprising since

increasing the bias flow up to Ivbiasl = 0.02 changes the resistance of this sheet from its linear value

of about 0.1pc to over 5pc, which nearly closes off the backing cavity. Even the face sheet attains

fairly high resistance (about 0.5pc) at the highest bias flow levels depicted in Fig. 6, and the SPL

shows a (somewhat smaller) drop at its location also.

Another interesting feature of the SPL plots is that they flatten with increasing bias flow. With

no bias flow, the SPL tends to show a broad peak near the lower wall (!/ = 0) and generally

decreases with increasing y so that it is fairly low near the face sheet (!/= 15.25). The application

of bias flow generally pulls the maximum down at y = 0 and lifts SPL near the face sheet. The

net effect is a smaller difference between maximum and minimum SPL, or a general flattening of

the profile. Again, this is consistent with increasing resistance at the face sheet. As discussed in

the validation section above, a hard wall placed at the face sheet, which has intinite resistance,

produces completely flat profiles. Thus, it is no surprise to see flatter profiles when Z_ias gives the

face sheet a large resistance.

Recalling that the hard wall case provides no attenuation of transmitted power suggests that
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Table 2: Comparison of Insertion Loss and Corresponding Fractional Power at Outflow between

the Present Simulation and the Experiment.
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very high bias flow levels, which increase resistance and make the face sheet act more and more

like a hard wall, will decrease the liner's effectiveness. Such a result is seen in Fig. 7. Plotted

are transmitted power drops for four cases with increasing bias flow magnitudes. It is seen that

increasing Vbias magnitude from 0.0 to -0.01 provides a fairly large decrease in the slope. Over the

length of this duct, this provides about 40T0 greater drop in transmitted power. However, increasing

Vbias magnitude from -0.01 to -0.03 provides no additional attenuation. The figure suggests tl_at an

optimum bias flow level exists for acoustic power attenuation in this lined duct configuration.

Figure 8 quantifies the optimum bias flow level more clearly. Displayed are the slopes of the

transmitted power curves, in their linear region, versus bias flow magnitude. Lower (more negative)

slopes indicate greater power attenuation. It appears that a bias flow tVbias ---- --0.01 (3.4 re�S) pro-

duces nearly optimum attenuation of transmitted acoustic power down the duct at this frequency.

Larger bias flows result in a slow decrease in attenuation.

As mentioned above, the geometry of this study matches the experiment of Yu et al., 4 so that

the numerical and experimental results may be compared. The experiment measured dB insertion

loss of a broadband noise source across the duct length at several single frequencies and bias flow

levels. The maximum attainable bias flow magnitude in the experiment was lVbiasl = 0.01. Table 2

compares attenuations measured at 1250 Hz in the experiment, and their corresponding fraction

fp of transmitted power remaining by outflow, with the same quantities computed in the present

study. Both the experiment and present simulation exhibit the same trend of dramatic attenuation,

followed by a decreasing return, with increasing IVbiasl.
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Another comparison with the experiment is depicted in Fig. 9. Values of the simulation's

attenuation over the duct length (computed according to Eq. (25)), for Vbias = --0.005, are shown

at several plane wave _equencies (600 Hz < f <_ 4000 Hz) in the top plot, while the bottom plot

is insertion loss as measured in _he experiment. The same frequency response trends are evident in

both plots: peak attenuation is present at about 1250 Hz with fairly dramatic fall off to either side.

Note that, on a linear scale, differences when attenuation is 10 dB or more are quite small. The

approximately 3 dB difference in peak attenuation (at 1250 Hz) corresponds to an experimentally

observed 95% and a numerically calculated 90% power attenuation. Again, the simulation agrees
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favorably with experiment.

Concluding Comments

This study has developed a promising new method for predicting noise attenuation in acousti-

caUy lined ducts. The method is founded upon time-domain governing equations which are modificd

to account for the presence of acoustic lining materials interior to the domain. The modification is

simply a source term in the momentum equations which provides for acoustic reactance and both

linear and nonlinear acoustic resistance, but in the time-domain. The modified equations may be

readily time integrated using numerical methods. The main benefit of analyzing duct problems in

this way is that complicated liner behavior and structure are easily implemented. Also, multiple

frequency and multiple mode noise environments may be examined. In sum, the method developed

here provides promise as an analysis technique for actual liner structures within realistic noise

environments.

The time-domain analysis is empirical in the sense that constants in the modified governing

equations must be matched to complex impedance data for the component sheets of the liner

using a numerical impedance tube. The impedance tube simulations employ the same equation

modifications, and the model constants axe adjusted until the standing wave pattern in the tube

matches that which would be produced by a sample with the desired complex impedance. A

one-to-one correspondence exists between the frequency-domain impedance values and the time-

domain model constants, which aids in the matching process. Spectral analysis of the pressure
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signal transmitted through the impedance tube sample gives the same scattering to odd harmonic3

seen in experiment. The matched constants are then used in the full duct simulations to mimic the

behavior of that material sample.

. t. " ns lined duct provide additional evidence thatTwo-dimensional numemcM snnulatlo involving a

the liner model is a viable-design tool. The computational geometry matches that of an experiment

conducted at Rob.r, Inc. The trends observed in the simulations compare well with those of the

experiment. Specifically, attenuation as a function of bias magnitude at a single frequency, and

attenuation as a function of frequency at a single bias magnitude, behave the same in the experiment

and simulation. The quantitative agreement is acceptable in light of experimental uncertainty, the

numerical model's empiricism, and the numerical restriction to two dimensions. It is found that, for

this liner and 140 dB waves of 1250 Hz, an optimal bias flow magnitude is about 0.01, or 3.4 m/s.

With the optimum bias velocity, the liner efficiency is significantly improved over the no bias liner,

lending support to the idea that bias flow may be used to tune and improve the performance of a

liner. Further, this application demonstratcs that the new model may be used as a design tool for

determining optimal liner configurations and operating conditions.
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Abstract

An invisdd, spatial time-domain numerical simu-

lation is employed to compute acoustic wave prop-

agation in a duct treated with an acoustic liner.
The motivation isto assessthe effectson sound at-

tenuation of bias flow passed through the linerfor

applicationto noise suppression in jet engine na-

celles.Physically,the lineriscomposed of porous

sheets with backing air cavities.The mathemat-

ical model lumps the sheets'presence into a con-

tinuous empirical source term which modifies the

right-hand side of the momentum equations. This
source term specifiesthe time-domain behavior of

the fzequency-domain resistanceand reactance of

the liner'scomponent sheets.The source term con-

stantsare matched to frequency-domain impedance

data via a one-dimensional numerical impedance

tube simulation.Nonlinear behavior of the liner at

high sound pressure levelsis included in the form
of the source term. Sound pressure levelsand axi-

allytransmitted power are computed to assessthe

effectofvariousmagnitudes of bias flow on attenu-

ation.Shnulation results are compared to available

experknental data on a geometricallysimil_rlined

duct.

Problem Introductionand Des_--iption

Reduction of noise emitted from jet enginescon-

tinuestobe a key component ofaircraftdesign.One

major facetis inlet noise. Mechanical and hydro-

dynamic noise from the engine components propa-

g-atesupstream and out of the inlet.Current g_.n-

erationjet engine designs treat nacelleinlets with

acousticlinerscomposed ofporous sheetswith back-

bag air cavitiesfor acoustic attenuation. It iswell
known that the knpedance of porous sheetsvaf.es

°Graduate Research A._i_nt, StudentMember, ALAA.
tprof_sor,Asr_ciateFellow,AIAA.

C_pyri_ht_)1997by R-S.Reicher_.Publishedby theAmer-
icanL-_titute of AeronauticsaJndAstronautics,Inc. with

permission.

at high sound pressure levels. Observations show

thatincidentsound pressureamplitude relatesnon-

linearlyto particlevelocityboth for a singleorifice

(Ingardt) and porous sheets (Melling_). One con-

ceptforvaryingthe impedance propertiesoflinersis

to exploitthisnonlinearbehavior by blowing a.low

level,steady bias flow through them. In this con-

cept,the bias flow,which might be generated nat-

urallyby redirectingthe oncoming stream through

the nacelleskin,could be adjusted to tune the liner

impedance foroptimum attenuation over a range of

Right conditions. The present study considers high

amplitude acoustic propagation within a simple duct

geometry in an effort to model the physics and even-

tually validate this idea.
The goal of this work is to develop a design tool

for time-domain numerical simulation of acoustics

in the presence of sound-absorbing liners with bias
flow. The physical and geometric attributes of the

liners are lumped into a model term with empiri-

cal constants. This model term modifies the gov-

ernbagequationssuch that the linermanifests itself

ir_erior to the domain rather than through finite

impedance boundary c_,_Htio_. The model con-

stants are matched to complex Lmpedance data for

liner materialsso that the simulation produces the

same impedance behavior as the actual material.

The governing equations are integrated forward in
time to capture the evolution of the acoustic field in

the presence of the liner structure. The primary mo-
tivation is to assess and optimize the effect of natural

bias flow through the liner.

The geometry considered here approximates that
of alined duct test section constructed at Rohr, Inc.,

as detailed in Yu, Kwan, & Stockham z- Depicted

in Fig. 1, the section is 19.25 crn in height and

61 an in len_h. The numerical simulation consid-
ers a two-dimensional planar cut bounded by solid

rigid walls at top and bottom and by open bound-
aries, indicated by dotted lines in the figure, at Ie_

and right. The top surface of the duct is acousti-

cally treated with a liner composed of a porous face
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sheet(18%openarea)and backing septum (6% open

area) sandwiching a honeycomb core. Additionally,

the air cavity behind the septum may contain back-

ing sheets (8.7% open area). These sheetsapprox-

imate the presence of corrugation septa which are
distributedin the duct's thirddimension in the ac-

tual experiment; two coaRgurations dis_-ibuting the

septa in the simulation's two dimensions were tested,
as will be discussed. Plane waves (i.e., lowest duc_

modes) are forced at the left boundary and allowed

to propagate along the duct to the right through a

quiescentairmedium.

Development ofTime-Domain Model Form

Consider the integral form ofinvisdd conservation

of momentum applied to a fixed controlvolume,

which states that the rate of change of momentum

wi_._ the control volume is equal to the net flow of

momentum across the volume's surface plus the mo-

mentum change due to surface pressure forces. Sup-

pose now that we apply _ equation to the Carte-

sian differential controlvolume _-o AV = d'v"=

_ &) depicted inFig. 2. Further,suppose that

some porous acoustic liningmaterial isdi_ributed

uniformly throughout the volume. The material's

presence will lead to a pressure change across the
volume in each coordinate direction, augmenting the

pressure gradient as shown. The pressure force term

becomes

/A ap (AP_ an/, (2)_o_ p_T= -_-_=_v- _),

where we h_ve employed tensornotationon the right

side.Following Zorumsld & Paxrott4's,we writethis

pressure jump term as a time-domain :_istive term
P_d multiplying the local velocity u_,

so that

Um - p Si = -_ _ - l_d_ _. (4)

Equation (3) assumes that the pressure jump will
instantaneouslysatisfya steady flowresistancerela-

tionacrossthe differentialvolume. Additionally,the

effectivefluiddensitywithin the volume isreduced

by a constant time-domain f_tor Xm between 0 and

I due to the materLal presence:

p _ X_p 0 < X_d <_ l. (5)

For the di_erentialcontrolvolt=..= -:_ momentum

fluxterm becomes:

r_ -fAC_'_)_= X_,-_-"-'_=_)_V. (6)P',V _0 ,,_ --

Sub_tnti._ _. (4), (5), and (e" _ _. (Z)and
recoveringvectornotation yields _ _ed differ-

entialmomentum equ_ion:

_1__(v-a6_') + v. (_ _ = - -_,d_- (7)
-&- x_ -

We must now substitutemodel _ for/_ and

Xm which properlymimic the tLme--_ behavior

ofacousticliningmaterials.

Mathematical Mo_

The _oveming equations are _he .---_o-dimensio),_]

Eulerequations, which express co.-_tion of ) ,_::,

momentum, and energy for the ;m-_.scid motion of

compressible fluids. They are h___ written for a
Cartesian domain with no body f_--css present:

a_ a_ a_
___+_ + _ = _-, (s)

where

T_'-(p pu p'u b-) T, (9)

and

,

The stateequation doses the system:

1 2

E = 7P_1+ _p(u +_)-

(zo)

(li)

The above set has, as the dependent variables,the

conservedquantitiesof mass p, z-chrected momen-

tum Fa, y-<Jizected momentum _, and totalenergy

E, each expressed on a per volume basis. The prim-
itivevariablesare densityp, z-d/zected velodty u,

_-<lirectedvelocity_, and pressure p. Specification

ofthe open sidesasnonreflectiveand the solidwalls

as d_id slipboundaries comple_es the definitionof

the mathematical problem.

We have nondimensio_ed the equation system

using the foUowing reference scales:

4 = 0.01 m

U, = 340.25 m/s

l_./Ur = 2.939 x I0 -s s
p, = 1.225 kg/m 3

p,U_ _ - 1.418 x 10s P(_

---+ len_h scale,
--+ velocityscale,

---+ time sr_le,

density scale,

--+ pressure, energy
scale.
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Note that the den_ty and velocity reference val-

ues correspond to s_andard atmosphere density and

sound speed. It is also worth notin_ that the equa-

tions will capture both linear and nonlinear phenom-

ena.
The presence of the discrete porous sheets is felt

via the source term S from the right hand side of

Eq. (7). We form R_ and X_ to capture the general

experimental frequency-domain behavior observed

by Ing-_rdx, Melling=, and Zorun_ki & Pa-,'rotts.

Specifically, Rx_hr,Inc. provided impedance data in
the form

== + sv) + (12)

where V is the root-mean-square velocity at the

sheet sudan. The real part is the velocity depen-

dent resistance, and the imaginary part is the re-
actance. The term S allows for simple nonlinear

bdmvior in the resistance:

1
S=

x - x (Sx(=,z/)/[/x (=,

x
{@la=[avian+ ,,sR(o,y)(-4+BI,,I)l)

(o)_ c(=,y) (z3)
0

0

The empirical parameters A, B, and X respectively

specify the levels of linear resistance, nonl/nearre-

sistance,and linear reactance of each sheet, but in
the time-domain. The distribution C(x,_/) is set

to a constant value (C = 0.8) between the face

sheet and paratlel backing septum to account for

the presence of the honeycomb core. Since thisad-
ditionalres/stance-liketerm only appears in the z-

momentum equation, it acts to suppress u within

the core and thus helps the face sheet/septum com-

binationapproximate a locallyreactinglinersurface.

Note that A = B = C = X = 0 gives back the odg-

Euler equations, so these correspond to open

a/r. The Rmctions fjz(z, y) and fx (z, I/) control the

spatial distribution of the liner's effect for the resis-

tance and reactance, respectively. They are specified
as Gaussian distributionsin a coordinate s normal

to the sheet surfaces:

I 1 .=,_-=
--e-" "- (14)I(s) -

The constantc_zisfixedas 2A= simply to distrJb_:c

the discreteeffectof sheet resistancefor nu_c_i

colpurposes. The constants A, B, X, and _x are

matched to complex impedance data via a numeri-

calimpedance tube simulation,as described below.

The authorsconducting the duct experiment3 pro-

vided the impedance data.

Nonlinear behavior in reactance isnot explicitly

modeled in Eq. (13).This nonlinearitytends to re-

duce the sheet reactance,but the effectis not in-

definitein the provided impedance data. When the

root-mean-squarenormal velocityat the sheet sur-

faceattainsa high enough level,the reactance again

assumes a constant value. The velodty at which

saturationoccurs depends on the particularsheet

porosity,but isat most 0.0095 for the component

sheetsconsideredhere. A amstant reactance must

be used forallsheetswhen Ivb_[ > 0.0095. Below

thislevel,each sheet must be consideredseparately

as towhether itsreactancebehaves nonlinearlyor is

saturated.

Itwas found inthe course ofthe simulationsthat

ifan explicitnonlinear reactance term is used in

Eq. (13),the model produces a smallerreactance re-

ductionthan itshould. This resultedin largejumps

inthe averaged data (i.e,in the slope of the trans-

mitt_l power per span curves seen in Fig. 7) when

the biasflow magmitude dictatedthat the reactance

switchfzom nonlinearto saturatedlevels.Of course,

thisonly a_ected cases for which <- 0.0095,
since all of the sheets perform with saturated re-

actance for > 0.0095. To approximate the

variablereactance,X was computed to be 3 fi:x_._c]

number between the linearXm_ and the saturated

X_, sizedaccordingto the expected normal ve.loc-.

ityateach sheetsurface.Effectively,_ processisa
linearizationof the reactance about each particular

biasflow level.

Numerical Solution Method

We wish to discretizeand integ-ratethe partial

di_erentialequation system (8),coupled with the

spatialboundary conditions. The domain is rect-

angular,with uniform mesh in both the z- and y-
directions.The time-advancement scheme isGot-

flieb& Turkel'ss expticit(2,4) scheme, which is

second-orderaccurate in time and fourth-order in

space. The variantof the method used here isa

MacCormack-like explicitpredictor/correcter.For

grids that are uniform in z and !/, the method may
be written as:
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&

l_;./ = I_'/,_: accuracy of the method is unaffected. The paramc-

-+I __ 1_- -.

- .[TCF;j- - -

Here, At At

= 6-A';' = whereThe above steps employ" forward differencing in the

predictor step and back-w_d differencingin the cot-

rector step. This is switched on alternating time Th osteps to a predictor with baz_k'ward differencing and vez a
correctorwith forward d_erencing inordertoobtain for h,

the full (2,4) accuracy. For stability, the Courant- ma ttFriedrich_Lewy (CFL) number should satisfy: tec ai
nol

(u + a)==At _ 2 a c Ec

and __ + 2 ,,:

where a is the local sound speed, a = _3'P/P. for h

The C2,4) stencil has five points in both x- and en|

y-direCtions, so it extends over the domain edges at de' k

a boundary and firstinteriorpoint. The method te_ _t_es the unmodified (2,4)scheme at the firstinte- rig :_
riotpoint.To account for the pointbeyond the edge, w-_

fluxes axe extrapolated(third-order)toa ghost point so_ _

one increment outsidethe doma£m Boundary points by m
are treatedwith the method of Thompson t_. This po t

boundary treatment uses a characteristicdecompo- (lu ._

sitionof the Euler equations to _ve an estimate of in( ie
the flux derivative normal to the boundary at the : et

boundary, fo_ d

Artificialviscosityterms may be added to the Io_ d
scheme to enhance stability,as indicatedby the D m_ m

terms above. SLrth-orderdissipationisadded as a

source term to t.be right-hand side of the Euler equa- z -

tions:

-- _v 6_, ,,

D=_ (_) --+(Ay) _ . (17) w_
/ O--'_s O'at J pr s_

The sizes of the arterial viscosity terms are K
O[(Az) s] and O[(hy)S], so the fourth-order spatial = --
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ter _ isuser-definedand did not exceed _ = 0.04.

The centraldifferencecoellicientsused for the sixth-

derivativesare computed usingLagrange polynomi-

als.We found some explicitdissipationnecessaryto

suppressspuriousoscillationsdevelopingaround the

porous sheets.
The mean biasflowisspecifiedasa _frozen"field

upon which the acousticperturbations are allowed

to evolve.In thisway, the mean fieldneed not be

computed; nor does it evolve. The addition of a

forcing term _"to Eq. (8) accomplishes this:

"=:

g= OF OG : (19)
Oz Ov

The overbarhere denotesthe mean field.A uniform

verticalvelocityv'o_ isused throughout the domain

for the mean field.Thus, the bias isdirectednor-

mal to the liner, and there is no grazing flow. This

technique has the limitation that the mean field does

not feel the presence of the liner structure, but it is

a quick way to obtain a converged bias flow.

Numerical Impedance Tube Simulation

As mentioned above, the linermodel's empirical

parameters must be matched to the impedance data

forthe porous sheetsunder consideration.To this

end, a numerical model of an impedance tube w_s

developed.One-dimensional Euler equations are in-

tegratedon a domain with a rigidterminationatthe

rightend. The leftboundary isforcedwith acoustic

w_ves. A numerical porous sheet =sample" isplaced
some distance to the leftof the rind te._---'=._t_on

by centering the Gaussian distribuuoas (14) a_. _.ha_

point. The effective impedance of the sample is de-
duced from the standing wave pattern set up by the

incident and reflected waves.

Details of the impedance computation may be

found in introductory acoustics texts. Here, we fol-
low that of Kinsler, Frey, Coppens, & Sanders _. The

measured impedance z is computed as

1 + Ke _°

1 - Ke _° (20)

The constant K is given in terms of the standing

wave ratio SWR, the ratio of maximum to minimum

pressure amplitude:

SWR --1 Pmax
where SW'B. = --. (21)

SWR + 1' P_.

II II I I r" t_,,_ ; i]-_'z,.; ,_ --
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The value for0 isgiven by the phase ofthe standing

waves relativeto the sample surface:

0 m 2k(:za_mple -- zuode) -- 7r, (22)

where k is the wavenumber of the incident waves.

The impedance value thus measured equals that of

the sample plus the impedance of the closed tube

behind the sample. Kinsler et al.g show that this

backing tube impedance is - cot(kd),where d isthe

depth ofthe cavityfrom the sample to the rigidter-

mination. Consequently, we fix the depth at one-

quarterincident wavelength such that -cot(kd) =

0,so that the measured impedance ks simply thatof

the sample.
The time-domain constants A, B, X, and _x

are adjusted until the computed impedance matches

that of the porous she_, wh2ch is of the form of

Eel. (12). The present model has a simple nonlinear

frequency-<lomaln behavior, but there is no inherent
limitation to the complexity that could be mimicked

with a time-domain model. In match_g, there ex-

ists a one-to-one correspondence betweea A and ?'Q,

B and S, and X and X. The parameter _x may

also be adjusted to effect gross changes in X. Fig-

ure 3 shows a representative standing wave solution

for the 6% open sheet, with the center of the sheet

indicated by the vertical line. The following table
shows the constants obtained through application of

this method to the three diff_ent sheet types.

Pot. A B Xm_ X_i_ ax

18.0% 0.0235 20.5 0.705 0.535 4.0 Az
8.7°70 0.0428 96.1 0.705 0.535 6.8 Ax

6.0% 0.06 193.5 0.78 0.605 8.8 Ax

This method is general in the sense that complex

impedance data for any sample, porous sheet or

other, can be matched to the empirical constants

ofthe model.

Duct Code Validation

The resultsoftwo trialsimulationsprovideimpor-

tant checks of the duct code solutionmethod and

boundary conditions.In the firsZcase,a hard wall

boundary condition isplaced at the positionof the

facesheet,and the lowest duct mode isforcedwith

nondimensional amplitude 0.002 (140 dB) and fre-

qu_cy 27r/17 (2000 Hz) at the leftboundary. In

thisinviscidsimulation,the waves should propagate

along the duct with no attenuation,so sound pres-

sure level(SPL), computed fzom the simulationdata

as

SPL = 10 log _- dt /p,,f , (23)
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should remain a constant 140 dB. Here, T is a peziod

of the wave and i6,_! is the nondimensional equiva-
lent of 2x I0 -s Pa. Further, the x-directed intensity

I=, definedby

should be a nondimensional constant 2 x 10 -s at

all points within the domain. Finally, the power

transmitted along the duct per span, computed as

P/span =/o "= r= @, (25)

should remain constant at 3.05 x I0-s nondb_c_

sionally, since y=_x = 15.25. Plots of the above

quantities as computed from the simulavion are not

displayed since all profiles are flat. Examination of
the numerical results, however, show that the time-

domain simulation yields the above quantities to at

least four significant figures after reaz.hiug a hat-

manic state.
The second trial case tests the method's ability to

allowwaves to exit the open fight boundary with

minimal reflection.In _ case, all signi_cant fea-
t_es of the simulations are iacluded. That is, the

full domain is considered, including the presence of a

liner with face sheet, septum, and honeycomb. Also,

a bias flow vm=. = -0.01 is applied. One run em-

ploys the domain length of 61 to be used for the
later simulations; the doma£u length is doubled for

the second run. The time of simulation is designed so
that the waves have a chance to establish a harmonic

state for z < 61 but do not have a chance to reach

the right boundary of the long domain- The time

is also long enough for reflections to appear in the
shorter domain. Figure 4 demonstrates that degra-.

dation from reflections is slight. Plotted are drops

in transmitted power per span from the left side of

the domain to the particular x-station of interest. It

is apparent that some difference between the curves

exists near the outflow, though this difference is less

than 3%. In this study, we use the slope of these

curves in their linear region (measured arbitrarily

as the slope drawn between points at z = 22 and

z = 35) to quantify the duct attenuation. The two

slopes are -2.035 x 10 -7 and 2.034 x 10 -r, which

differ by less than 1%. It can be concluded that for

the purposes of these simulations, the artifidal open

boundary conditions are performing adequately.

Du_ Simulation Results

The effect of vatting levels of bias flow is exam-

ined for the propagation of the lowest duct mode

_: :---r:-- ........... . ............... : ": ........



when the liner consiszs of the face sheet and parallel

septum sandwiching a honeycomb core. The domain
is d_cretized using a 489 x 155 uniform mesh (B.z =

A_ = 0.125), and CFL numbers axe approximately

0.16, which is about one-fourth of the linear stability
limit. The nondimensional amplitude of the waves

is set to 0.002, which corresponds to 140 a[B. The

frequency o£ the waves is aJ = 2,-r/17, which dimen-

sionally is 2000 Hz. Nondimensional bias flow ve-
locities are in the range 0.001 < [_,[ <_ 0.03, which

dimensionally_ves 0.34 rn/s _<[_..[ < 10 _/s.
Figure 5 is a comparison of sound pressure levels

for varying magnitudes of bias flow. The plots show
SPL cuts in y at two z-stations. The y-location of

the two horizontal porous sheets is indicated by the

dotted vertical lines. As expected, SPL drops dm-

matica£ly within the Ilneras ]z_l increases. It is

apparent that as the bias flow incre_es, SPL drops
more dramatically at the surface of the 6% septum

sheet. This is sensible because increasing bias flow

up to [_>oi=[ = 0.02 changes the resistance of this
sheet from its linear value of about 0.1gc to over 5pc,

which essentially doses off the backing cavity. Even
the face sheet attains f_rly high resistance (about

0.5pc) at the highest bias flow levels depicted in F_.

5,and SPL shows a (somewhat smaller)drop at its

location also.
Another interestingfeature of the SPL plots is

that they flatten with increasing bias flow. With

no bias flow,SPL tends to show a broad peak near

the lower wall (7 = 0) and generallydecreaseswith

increasingIIso that itisf_rly.low at the facesheet

- 15.25). The applicationof bias flow generally

pulls the maximum down at y = 0 and liftsSPL

near the face sheet. Again, thisisconsistentwith

increasing resistance at the face sheet.As discussed

inthe validationsectionabove, a hard wall placedat

the face sheet,which isinfiniteresistance,produces

completely Bat profiles.Thus, itisno surprisetosee

fairlyflatprofileswhen z_ givesthe face sheet a

largeresistance.

Recalling that the hard wall case provided no at-

tenuation of transmitted power suggests that very

high bias flow levels, which make the face sheet act
more and more like a hard wall, will decrease the

liner's effectiveness. Such a result is s_n in Fig. 6.

Plotted axe transmitted power drops for four cases

with increasingbiasflowmagnitudes. Itisseen that

increasingv_= from 0.0 to -0.01 provides a fairly

Largede, ease in the slope. Over the length of this

duc% thisprovidesabout 30% greaterdrop intrans-

mitted power. However, incrsa.stngubi= from -0.01

to-0.02provides no additionalattenuation.The fig-

ure suggestsan optimum bias flowlevelforacous;ic

power attenuation in _ duct/linerconfig'aration.
Figure 7 quantifies the-optimum bias flow level

more dearly.Displayed axe the slopesof the trans-

mired power curvesintheirlinearregionversusbias

flowmagnitude. Lower slopesindicategreaterpower

attenuation.The firstplot exlfibitsslopesfor the

basic configuration of an 18% face sheet plus 6%

parallel backing septum with an empty backing cav-
ity. For the second plot, cases were run with 8.7%,

_45 ° corrugationsheetspresent in the backing cav-

ity,but running in the z-direction. Finally, case _-for
the thirdplot were run with an 8.7% pa._lleiSel>-

turn presentinthe backing cavitymidway be_'ecn

the 6% septum and the rigidwall. The lattertwo

configurationsareattempts to,insome measure, ac-

count for the presence of 8.7% sheet corruptions

distributedin the th£rddimension of the actual ex-

perimental duct lining. All cases includethe hon-

eycomb between the face sheet and septum. It is

seen in Fig. 7 that the presence of 8.7% sheetsi_

the backingcavityonly maxg_nally affectsthe mi_i-

mum slope.For allthree conJi_rations,itappears

that a biasflow _b_--= --0.01(3.4 m/s) produces

optimum attenuationoftransmittedacousticpower

down the duc_ at this_requency.

As mentioned above, the geometry of this study

matches the experiment of Yu et al.s The ex'per-

iment measured d.B insertionloss of a broadbaud

noise source acrossthe duct lengthatseveraldi_er-

ent _quencies and bias flow levels.The following

tablecompares attenuationsmeasured at 2000 Hz

in the _cperiment to the power slopescomputed in

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0250

the presentstudy:.

Experiment
-_s=, Insertion Loss

3.50
4.25

5.25

5.25

4.75

Simulation

Power Slope

(xzO-D
-1.35

-1.60

-1.70

-1.80

-1.85

-I.85

-1.75

Both theexperiment and presentshnulationsexhibit

the same trend of rapidlyincreasing_,,.z__uuarkoz,

followedby slowlydecreasingattenuation,with Ln-

creasing[_=[. The optimum _i= in the experi-
ment has a somewhat lower magnitude, but overall,

the agreement _ favorable.
Another comparison is depicted in Fig. 8. Values

of the sim_ation'spower slope fort."oi= = --0.005

axe shown at severaldi_eren_ plane wave frequen-

ciesin the upper plot,while the lower plot shows
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insertion loss as measured in the exper/ment. The

same fzequency response u-ends are evident in both

plots: peak attenuation is present at about 1250 Hz
with fairly dramatic fall offto eitherside. Again,

the simulation agrees favorably with experiment.

Concludin_ Comments

This study has developed a new method for pre-

dicting noise attenuation/n acoustically lined ducts.
Time-domain simulation with governing equations

modified to include the time-domain behavior of

liner re_tance and reactance was applied to a du_

test section geometry. A liner configuration com-

posed of a face sheet and parallel sept-urn surround-

ing a honeycomb core of depth 1.25 cm was set on
one side of the 15.25 an duct. A cavi_ of depth

2.75 an backed the septum; dist_bution of addi-

tional septa within this bar.._Sng cavity produced

m£a_al change in the results. The time.domain
liner mode/included nonlinear behavior in the re-

sistance of the liner's component sheets. The sim-

ulations have demonstrated the presence of an op-

timum bias flow level. For waves of 140 dB and

frequency 2000 Hz propagating axiallyalong the

duct, I_i=[ = 3.4 m/s produced the greatest at-
tenuation in transmitted acoustic power along the

duct. Trends with varying bias flow and varying

R-equency agreed favorably with experimental mea-

surements performed at Rohr, Inc. --
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